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Analytical and non-analytical corrections to finite-size scaling 
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of Germany 
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Abstract. Using conformal invariance we calculate finite-size corrections to the scaled 
spectra of one-dimensional quantum chains at the critical point. An explicit application 
to the Ising and three-state Potts model gives good agreement with analytical and numerical 
results, respectively. 

1. Introduction 

In this paper we consider one-dimensional quantum chains, which are related to the 
transfer matrix of two-dimensional spin systems (Fradkin and Susskind 1978, Kogut 
1979). Suppose the Hamiltonian of such a quantum chain with an infinite number of 
sites N to be conformally invariant at the critical point. If one succeeds in determining 
the central charge c of this system, then for c < 1 all possible (not every representation 
has to be realised) energy eigenvalues are known at the critical point for N infinite 
(Belavin et a1 1984, Friedan et a1 1984). The aim of this paper is to calculate finite-size 
corrections to such a spectrum (notice that we stay at the critical point). 

Let us first review some known results. The spectrum of a quantum chain at the 
critical point in the finite-size scaling limit is given by certain products of two irreducible 
representations ( I R )  A and A of two commuting Virasoro algebras with the same central 
charge c (Friedan er a1 1984). We denote by A the highest weight, and by A + r ,  the 
rth level having degeneracy d ( A ,  r )  of one I R  of the Virasoro algebra. (The degeneracies 
d ( A ,  r)  can be computed using the character formulae of Rocha-Caridi (1985).) A 
state will be labelled by lA+r, & + P ;  i), ( i  = 1,2, .  . . , d ( A ,  r )d(& P)) ,  so that, at the 
critical point, we have for the scaled energy gaps as the number of sites N goes to infinity 

(1.1) 

where we omit the index i if the state is non-degenerate and E denotes the energy. 
In the same limit we have for the scaled ground-state energy (AWeck 1986, Blote et 
a1 1986) 

(1.2) 

9 ( A + r ,  A+?; i)= ( N / 2 r ) ( E ( A + r ,  & + P ;  i ) - E ( 0 , O ) )  - N-CC A +  r + i + F  

8 0 s  ( N / 2 r ) ( E ( O ,  0)- uON) - N -E - ~ / 1 2  

where a. is a non-universal constant. 

9 ( A +  r, A +  7, i )  = A +  r + & +  7+ c , (A,  A, r, P; i )N-" l+  cz(A, A, r, P; i ) N - " I + .  . . 
For finite N one expects instead of (1.1) and (1.2) 

(1.3) 
$0 = - C/ 12 + Cl N-"' + C2 N-"2 + . . . (1.4) 
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where 0 < a l  < a? and the functions c , ,  c 2 ,  . . . , are unknown. Our aim is to clarify the 
values of a and c. If a is an integer we have analytic corrections, otherwise not. 

The paper is organised as follows. In 9 2 we calculate some finite-size corrections 
in (1 .3)  and (1.4) for the case where the state lA+ r, A +  ?; i )  is non-degenerate. In 90 3 
and 4 we apply our results to the Ising model and  the three-state Potts model and  
compare them with the exact solution and  numerical results, respectively. A summary 
of our results is presented in 9 5. 

2. Finite-size corrections due to operators belonging to the conformal block of the unit 
operator (analytic corrections) 

Consider a strip of width N with periodic or twisted boundary conditions. We want 
to calculate corrections to the spectrum of the conformal theory for N large. The 
Hamiltonian will differ from the fixed point Hamiltonian by terms involving irrelevant 
operators, so that for N large enough one has (Cardy 1986a) 

f N / ?  

where pl are unknown constants and +I are local fields of the conformal theory. A 
field + on the strip depends on the variables w = T +  i v  and  W = T -iv (-CO < T < 
CO, - N / 2  s v s N / 2 ) .  Sometimes we write 4 ( ~ ,  v )  instead of c$( w, W). The choice 
T = 0 in (2 .1)  is arbitrary due to translation invariance in the 7 direction. Let (AI + rI, 
iJ + JI) be the scaling dimension of 4) and let 

xI = A, + rI +A, + 5.  (2.2)  

One can show that the field 4J will give, in k-order perturbation, corrections to the 
gap (1 .3)  proportional to N-k(xl-2’ . I f  4(  w)  is a primary field then ( L k 4 ) (  w)  denotes 
a field belonging to its tower, especially Lk( w )  belongs to the tower of the identity. 
In this section we investigate corrections up  to order N - 2 ,  coming from the tower of 
the identity (AI = Ll = 0 in ( 2 . 2 ) ) .  We start with a lemma. 

N / >  Lemma. The operators j - N , Z d v L - k ( ~ ) ,  k s 3 ,  give no corrections in any order of 
perturbation theory to the fixed point Hamiltonian. 

ProoJ: It is sufficient to show that all matrix elements vanish. Consider 

dv  w)lA’+ r ‘ ;  A’+ F ’ ; j )  (A+r ,&+F;  iI 
N / ?  IN,, 

N 1 2  

dv exp[ ( 2 ~ /  N ) (  r ’ -  r ) (  T + io)] 
/L2 

= SJ&,&.8i,i’ 

x(A+r ,  i + F ;  i l L k ( 0 ) l A + r ’ , & + ? ;  j )  

= NS,,,.S&,a,S.,,S,i,(A+ r, A +  F; i /Lk(O)1A+ r, &+ F; j ) .  

Now from 
(2 .3)  
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(the counter c,. surrounds the point w )  one has for k z 3  

( A + r ,  &+F; i l L _ k ( w ) l A + r ,  A + F ; j )  

= [( k - 2 ) ! ] - ' d k - 2 ( A +  r, A +  f ;  il T (  w)lA+ r, A +  f ;  j )  = 0 (2 .4)  

since the last matrix element is w-independent. This completes the proof. 

Having in mind that we are interested only in corrections up to N-' to the gaps (1 .3) ,  
we are left with the two possibilities 

+1(w, a)  = L - 2 ( w ) L _ 2 ( W ' )  (2 .5)  

and 

42( w, W) = LT2( w )  + P*( W) (2 .6)  

if we suppose that 4, belongs to the tower of the identity. (The combination LT2( w )  - 
LZ2( W) is not possible, since it does not respect the symmetry E (  p )  = E ( - p ) . )  

In order to calculate the matrix elements ( A +  r, A +  q & ( O ,  O)IA+ r, A +  ?)-we sup- 
pose that the state ( A  + r, A + 7) is non-degenerate-consider the spectral decomposition 
of the three-point function 

( d A . i ( T 1 ,  U l ) 4 k ( 7 2 ,  U 2 ) 4 A , i ( T ? ,  0 3 ) )  

= 1 c ( 0 ,  O l 4 ~ . x ( O ,  O)/A+ r l ,  &+ PI ; i) 
r l  .r: U 
il . i 2  

x ( A  + rl  , A + F, ; i /  4k (0 ,O)lA + r 2 ,  A + f2  ; j )  

x ( A +  r z ,  A +  f 2 ;  j14A.x(0, ())lo, 0 ) 5 ~ t r i ~ ~ + r 2 ~ + i ~ ~ ~ + i 2  

and that of the two-point function 

(2 .7)  

(2 .8)  

where 

4 =exp{(2.rr/N)[(7,-7,+l)+i(~,-u,+l)l}.  (2 .9)  

From comparison one obtains for ( A  + r, A + f )  non-degenerate 

( A + r , A + P I ~ , ( 0 , 0 ) I i ? r + r , ~ + P ) = ~ , , : , ~ / b , ~ .  (2.10) 

Formulae (2 .7)  and (2 .8)  are valied for A and different from zero. The case A = A = 0 
is obtained by replacing +*,a( w, #) by T (  w )  T(  w) in formulae (2 .7)  and (2.8). If, let 
us say, A is zero and A is not then one has to treat the w and $ dependence separately. 
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In order to obtain the corrections to the state ( A +  r, &+ ?)-which is supposed to 
be non-degenerate-due to the operators (2.5) and (2.6), we need the matrix elements 

(A+ r, &+ rIL-2i-2(0,0)IA+ r, d+  F) 
=(A+rlL-,(O, O)lA+r)(&+ FlL-2(0, O)lA+ ?) 

and 

( A  + r, A + Fl L? ( 0,O) + L! ( 0,O) I A + r, + ?) 

=(A+rlL?2(0, O)lA+r)+(&+Flt!z(O, O)lA+ F) 
respectively. 

For A = 0 one obtains from 

and 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

the element 

( r 1 L 2 ( 0 ,  O) l r )=  (2 r /N) ' ( r - c /24 )  ( r #  1). (2.15) 

Following the lines of (2.7)-(2.9) one obtains for A different from zero 

(A+rlL_,(O,O)lA+r)= ( 2 ~ / N ) ' / ( A + r - c / 2 4 ) .  (2.16) 

After some tedious calculations one obtains in  a similar way 

(A + rlL?2(0, 0)lA + r )  = ( ' N " ) ' [ ( $ ' + ~ + A ( A ,  - 
r ) ]  

(2.17) 

where 

11 c 
A(0, r) = (-+-) 30 12 r(2r2-3) ( r #  1) 

(2.18) ) A f O .  
r(2A+ r)(5A+ 1) 

A(A, r ) = ( A + r )  A---- + (( 1:) (A+1)(2A+1) 

Summing up our results we have for 4j belonging to the tower of the identity in (2.1) 
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the following corrections to the energy gap and the scaled ground-state energy: 

+P2[A(A, r )+A(&,  7)] + O W 4 )  I (2.20) 

(2.21) 

Notice that one also has to consider corrections coming from local fields dj  that do  
not belong to the tower of the identity. In  order to do  this one has to specify the 
model first. 

3. Applications to  the Ising model 

On a chain with N sites the Hamiltonian of the k ing  model is (Katsura 1962) 

A h  1 ”  
2y n = l  4y  n = l  

H = - -  1 d ( n ) - -  1 [ ( 1 +  y ) c r ‘ ( n + l ) a ‘ ( n ) + ( l -  y ) u ’ ( n + l ) u ’ ( n ) ]  (3.1) 

where ux, (T? and cr’ are the Pauli matrices. The normalisation of H, which is in 
principle arbitrary, is fixed by the requirements of conformal theory (von Gehlen et 
a1 1986). The phase diagram is well known (Barouch and McCoy 1971). For all 
y ( 0  < y G l ) ,  there is a critical point at A, = 1, which falls into the ZD Ising universality 
class (for y = 1 one has the Ising model). At the critical point ( A , =  1) and infinite size 
the spectra of the Hamiltonian (3.1) with periodic and antiperiodic boundary conditions 
are built by the irreducible representations (A,  &) of two commuting Virasoro algebras 
L, and L,, with central charge c = (Cardy 1986b, Henkel 1987). The possible values 
of (A, &) are (0, 01, ( f ,  f ) ,  (&, &) for periodic and (0, f ) ,  (i, O), (A, &,) for antiperiodic 
boundary conditions. 

By expanding the exact solution of (3.1), Henkel (1987) has obtained several 
corrections to the conformal spectra ( A  = 1, N = C O ) .  Let us list his results for the 
non-degenerate states of the system at the critical point ( A ,  = 1) 

9 ( A +  r, &+ 7) = A +  r + & +  f +  ( r 2 / 2 N ’ ) ( 1 / y 2 - ~ ) ( a ( A ,  r ) + a ( h ,  ? ) ) S O (  N-4) (3.2) 

+ o w 4 )  1 77r2 1 4 8 ---+- - _ -  
0 -  24 1920N2(y’ 3) 

where 

a( ; ,  r )  = ( r + t I 3  O S r S 3  

a(O, r ) = ( r - f ) 3 + Q  r = 0, 2, 3 

u(&,r)=r3-+g r = 0 ,  1,2.  

A comparison with (2.20) and (2.21) shows complete agreement for 

(3.3) 

(3.4) 

and /3 --(---) 3 1 4  
5 6 r  y 2  3 ’ 

PI = O  2 -  (3.5) 
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Until now we have concentrated our attention only on operators +j in (2.1) which 
belong to the tower of the identity. If one allows other operators, one can only take 
fields belonging to the tower of the energy density &-that has A = A = +-since other 
fields do not have charge zero but the Hamiltonian (3.1) does. Therefore one obtains 
only analytic corrections for the Ising model. Within the tower of the energy density 
one finds essentially only one operator that gives N-2 corrections to the scaled spectra, 
namely 

P o  / N I 2  N / 2  

du dO(0, U )  = P o  /-N,2 du(L-,L-,e)(O, U )  
- N / 2  

(3.6) 

N / 2  

du(L-,L-,E)(O, U )  L-2& = iL’,&. 
/ -N/2  

du(L!,&)(O, U )  = I - N I 2  N I 2  

It is easy to see that in the first-order perturbation theory +o gives no contribution, 
since it is a derivative. We have calculated the second-order corrections to all non- 
degenerate states and obtained full agreement with (3.2) for 

(3.7) 

Note that Po has to be real (hermiticity of the Hamiltonian), which is not the case for fa< y~ 1. Calculating the contribution to the ground-state energy, one encounters 
a divergent integral, which can be regularised. One can show that the final result is 
regularisation independent. 

Let V = P , { ” / ,  du(L-,L-,&)(O, U), then 

(3.8) 

One can also introduce a cutoff b (j: d r . .  . + jy d r . .  . ), which has the meaning of a 
lattice constant and obtain 

The finite part is of course the same as in (3.8). Looking at the N dependence of the 
divergent part, one sees that it can be absorbed by the regular part of the free energy, 
i.e. the constant a. in (1.2). 
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Inserting (3.7) into (3.8) one sees that the operator 4,, also gives the right contribution 
to the ground-state energy. In conclusion we have found that the Hamiltonian operator 

+- [ (4Tip)2] du( Lt2(O, U )  + LZ2(O, U)) 
5 6 ~  y 2  3 - N / 2  

(3.9) 

where p is an arbitrary real number and as usual 

H ' = -  du(L-*(O, U )  + L-,(O, U ) )  + regular terms (3.10) 
2'77 - N I 2  

has the same scaled spectrum as the Hamiltonian operator (3.1) at the critical point 
up to O ( W 4 ) .  Unfortunately we did not succeed in finding a criterion to fix the 
parameter p. 

4. Applications to the three-state Potts model 

Let us remind the reader that the spectra of the three-state Potts model with periodic 
and twisted boundary conditions are built by the I R  of two commuting Virasoro algebras 
with central charge c =: (von Gehlen and Rittenberg 1986, Cardy 1986b). 

Since no analytic results are known, we will compare the predictions of (2.20) and 
(2.21) to the numerical data of von Gehlen et a1 (1987). They found for the energy 
gaps at the critical temperature the following N dependence: 

4 ( A + r , h + f ) = A + r + h + f + c , ( A , h ,  r, f ) N - 0 . 8 + c 2 ( A , h ,  r, f ) K 2 + .  . .  . (4.1) 

Furthermore, they were able to explain the corrections, namely setting 

(4.2) 

where y = 0.009 237 (7). Notice that there are non-analytical and analytical corrections 
in (4.1.). 

In table 1 we show their values of c2(A, a, r, Y). For the scaled ground-state energy 
they obtained 

(4.3) go= -$-0.028 0 ( 5 ) /  N ' + .  . . . 

Table 1. Numerical values o f  c,(A, A, r, i )  (see von Gehlen et a/ 1987) defined by (4.1) 
for several levels. 

( O +  2 , o j  -5.810 ( 1 )  
(L 159 Lj 15  

( A +  1, i9 -1.6(1) 
G, 5) -0.328 (2 )  
( 3 ,  i9 -1.5 (3)  

+O.O32 38 ( 2  j 
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Comparing these values to (2.20) and (2.21) we obtain after a weighted fit p ,  = 
-0.002 (2) and p 2  = -0.005 6 (3) .  Since these values are consistent with PI = 0 we set 
P I  to zero and  obtain 

P 2 =  -0.005 6 ( 6 ) .  (4.4) 

If we d o  not restrict 4l in (2.1) to the tower of the identity, then 4l will have scaling 
dimensions (Al  + r,, A, + 7 ) .  Since the Hamiltonian operator of the three-state Potts 
model on a finite quantum chain has charge zero and  is neutral under charge conjugation 
the only possible values of ( A I A I )  are AI = A l  = 0, <, or 3. (Rittenberg 1986). It follows 
that N-* corrections to the scaled spectra can only be obtained from the tower of the 
identity (i.e. A, = Al = 0) .  

corrections to the gaps, which were not found numerically. We have calculated these 
corrections for the gap 9 ( 2 , 0 )  and the scaled ground-state energy K O ,  and obtain after 
a regularisation 

One important problem is still left. From (4.2) we expect, in second order, N-’ 

9 ( 2 , 0 ) = 2 - 0 . 0 1 0 9 3  ( 2 ) / N 1 . 6 + .  . .  
8o=-k-0 .001  721 (3)/N16+ . . . . .  

(4.5) 

(The numerical uncertainty is due to the uncertainty of y in (4.2).) A comparison of 
these numbers with the coefficient of N-’ in (4.1) and (4.3), respectively, explains why 
von Gehlen et a1 (1987) did not find the N dependence (in calculations with N 12) 
shown in (4.5). 

Finally we show the explicit calculation of the corrections to the ground state in 
(4.5). Consider the more general case 

d v  4 A , x ( O ,  U )  +. . . I N ’ 2  
H = H ‘ + y  

- N I 2  

where A = A := fx. Then in analogy to (3.8) one obtains in second-order perturbation 
theory 

(4.7) 

The last integral is only convergent for 0 < Re x < 1 and we are interested in x > 2 ( F  
is the hypergeometric function). For 0 < Re x < 1 we have after 2k partial integrations 

The right-hand side of this equation can be extended to all x with 0 < Re x < k + 1 and 
xiZ N (for x half-integer one can show that the sum in (4.8) is well defined). This 
method, which is obviously regularisation independent, has been used in the calculation 
of (4.5). 
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Summing up, we have for the three-state Potts model 
N / Z  

dv 47,5.7,5(0,  U )  L2 H = H ' + y  

\ 

J 
+ pz 1 dv ( L ? :  

where y = 0.009 237 ( 7 )  and p. = -0.005 6 (6). 

- N I 2  

5333 

(4.9) 

5. Conclusions 

Using conformal invariance at the critical point we have calculated finite-size correc- 
tions to the spectrum of a one-dimensional quantum chain in the finite-size scaling 
limit. Considering in (2 .1)  only local fields 4, that belong to the tower of the identity, 
we have obtained finite-size corrections for the scaled spectrum of non-degenerate 
levels up  to O( K4) (of course, one also expects, in general, corrections due to fields 
4, that d o  not belong to the tower of the identity). With this frame one obtains only 
corrections proportional to W 2  due to the fields 4, = L- ,L-2  and 42 = L?,+ which 
are given in (2.18)-(2.21). For the lsing and the three-state Potts models we have 
compared our results with the exact solution and numerical data, respectively, and 
conclude that the field 4, does not appear in (2.1) in both cases. 
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